www.johngill.net






Mathematicae Varietas

2




Displacement of the Z-plane:  |F(z)-z| 
F(z)=Cos(z)     z = x + iy    n=1   |x|,|y|<15
Black points are fixed points (Cos(z)=z). As color lightens, 
points are moved futher away from their initial positions under a single application of  F(z).
 




Simple Complex Dynamics 
Sensitive Dependence on Initial Conditions
F(z)=Exp(z)    z=x+iy  n=2   |x|,|y|<4
Points close together remain close through
two iterations (black) or move apart increasingly  (red  to blue)



 
Dendrite
A Dendrite fractal
The Julia Set arising from the complex dynamics
of the function F(z)=z^2+i





f=z+1/z CD R=4 n=15
The Crimson Spine
Simple Complex Dynamics 
Sensitive Dependence on Initial Conditions
F(z)=z+1/z    z=x+iy   n=15  |x|,|y|<4
Darker color indicates points close together stay relatively close under iteration.  Lighter shades indicate divergence.




Continue to Page 3