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                       Progress Report:  Zeno Contours in the Complex Plane 

                                                               John Gill                   August 30, 2012 

Abstract:  Zeno contours – sequences of complex numbers generated from a process that defines a path (contour) of a point z 

in a continuous fashion, yet demonstrating virtually no movement at a hypothetical instant – arise from explorations involving 

Tannery’s series (adding the next term of the series changes all the previous terms) [1 ] in the context of infinite compositions 

of complex functions. Specialized finite sequences (in the Euclidean plane) of this type occur in image processing in the 

construction of “active contours” or “snakes”, but theory of infinite extensions – certainly in the complex plane -  is not 

necessary there. “Zeno behavior” (infinite number of actions in a finite time period) occurs in these contour sequences and is a 

feature of hybrid dynamical systems, as well; see. E.g., [5]. “Zeno contours” is also a phenomenon occurring in certain physical 

processes, and the expression has a different meaning there.  The presentation here is informal, even casual, and more an 

exploratory stream of minor discovery rather than a refined paper. Nothing important here – just musings of an oldtimer! 

Define:  , ,( ) ( )
k n k n

g z z zη ϕ= +   where  z S∈  and  , ( )
k n

g z S∈   for a convex set S  in the complex 

plane.     Require  ,lim 0
k n

n
η

→∞
=  , where (usually) 1,2,...,k n=  .   Set  1, 1,( ) ( )

n n
G z g z= ,  

( ), , 1,
( ) ( )

k n k n k n
G z g G z−=   and  ,( ) ( )

n n n
G z G z=   with  ( ) lim ( )

n
n

G z G z
→∞

= ,    when that limit exists.     

The simplest example is  ,
n

k n

C

n
η ≡  .    In particular, let  1nC C= ≥  for now.  It is not required 

the functions so described be analytic in this region, although usually they will be. If ( )zϕ λ≡ , a 

constant, the resulting sequence is a simple Riemann sum.   

Assume that all aspects of the system delineated above are well behaved. This system 

nevertheless exhibits “Zeno behavior”. 

Consider a time interval  [ ]0,1I =   partitioned by
1

( 1)
,

n

k

k k

n n =

− 
  

.    Then a point z  is 

“continuously”  transformed via a path ( )zγ  into  ( )G z  in such a manner that at each “instant” 

of the time interval the motion of the point is virtually zero [2].  Such a pattern is analogous to 

Zeno’s Arrow [3], where the arrow traverses its path but exhibits no motion at any “instant”.  

                                   

Figure 1:  Zeno’s Arrow flight, computed using  ( ) lim ( )
n

n
G z G z

→∞
=  .  Resistance due to air 

proportional to velocity.
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Observe that  , 1, 2, 1, 3, 2, , 1,( ) ( ) ( ( )) ( ( )) ( ( ))
n n n n n n n n n n n

G z z z G z G z G zϕ ϕ ϕ ϕ −= + + + + +�  , if we set 

, ,( ) ( )
k n k n

z zϕ η ϕ= .  This is a Tannery series that does not conform to the hypotheses of 

Tannery’s Theorem [1], and thus its convergence is a matter of more diligent and delicate 

investigative techniques.      

Write ( )zF  for the vector or force field defined by ( ) : ( )f z z zϕ= + .  The graph of the passage 

of  z  to ( )G z  is a contour (z)γ  whose length depends to some extent on the value of C . The 

contour – which is self-generating - follows the flow of the vector field ( )zF , and may 

terminate at some unpredictable point or at a “well” (attractive fixed point of  ( )f z ). If the 

path of the contour closely approaches a singularity the result is chaotic behavior. 

                 

Figure 2: ( )
1

zf z e= , n=50,000 , 10C = . The contour is drawn to an apparent  attractor, but If  

C  is boosted to 13, the tip of the contour enters the black hole of the essential singularity. 

In the figures, vectors are scaled, with shorter lengths corresponding to smaller displacements 

and longer lengths corresponding to greater displacements. The self-generating contour begins 

at the green point and ends at the red point. nC  can be thought of as an “extender”. Increasing 

its value lengthens the contour. The color images are flux graphs showing displacements.    

These self-generating contours are somewhat related to “active contours” or “snakes” used in 

image processing [4]. In that context a virtual continuum of points constituting a snake are 

attracted to edges of images.  The journey of each initial point is similar to the subject of this 

note. A force field surrounding the edge must exist to compel each point forward. The 

mathematical constructs of snakes are formulated in Euclidean 2-space, rather than the 

complex plane, and involve finite rather than infinite iteration theory.          
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Figure 3:  f(z) = - Cos(z).  C = 10 , n=10,000.  Contours “converge” to an attractor of f(z). 

 

 

General Formulae:                      

It is a simple matter to verify the following : 

(1)        ( )1,

1

( ) lim  ( )
n

n
k n

n
k

C
G z z G z

n
ϕ −

→∞
=

= + ∑  
( )z

d
γ

ζ= ∫�            

(2)       ( ) ( )1,
( )

1

L ( ) lim  ( )
n

n
k n

z n
k

C
z d G z

nγ
γ ζ ϕ −

→∞
=

= = ∑∫�                  and 

(3)        ( )2

1,
( )

1

( ) lim  ( )
n

n
k n

z n
k

C
d G z

nγ
ϕ ζ ζ ϕ −

→∞
=

= ∑∫� ,    provided these limits exist.    

Previously discussed convergence behavior of  { }( )
n

G z , includes the case ( )z cϕ = , where the 

sums above are trivial Riemann sums and describe Riemann integrals, and   

( )  , 0z zϕ α β α= + >  , where  ( )( ) 1C c
G z e z e

α αβ

α
= + −   [2].  In other scenarios { }( )

n
G z

resembles a Riemann integral, but is a more convoluted concept.                                

 

In Figure 2,    ( )(.3 .5 )  1.017L iγ + ≈        

In Figure 3,       ( )( )4 4 6.1119L iγ − − ≈   and  ( ) 21.208 33.275z dz i
γ

ϕ ≈ +∫�    .                      
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                                    Additional elementary theory . . . 

The Simple Attractor Case:   Suppose  ( )   , 0 1f z zα ρ α ρ− < − ≤ <   in  a convex region  S . 

(Boundedness of derivative might lead to this, using  ( ) ( ) '( )

z

f z f f d
α

α ζ ζ− ≤ ∫  )  By drawing 

a pair of concentric circles   

                   
{ }1

( ) :c z zζ ζ α α= − = −     and   { }2
( ) :c z zζ ζ α ρ α= − = −   

 it is not difficult to establish the following:    ( ) ( ) )
n

C
g z z f z z

n
α α− ≤ − − −    ,   leading  to   

( )( ) 1 1n

C
g z z

n
α ρ α

 
− ≤ − − ⋅ − 

 
 .  Thus  ( )( ) 1 1

n

n

C
G z z

n
α ρ α

 
− ≤ − − ⋅ − 

 
   .          

Writing , for large  n ,  

             ( )

(1 )
1

(1 )

(1 )
1 1

1 1 1   
1

(1 )

C

n
C

n C
C

n e
n

C

ρ

ρ

ρ

ρ

ρ

−
 
 

− 

−

 
  
      − − = −          

   −  
  

∼      

For large values of  C   ,  ( )nG z α≈  .  In Figure 1,  ( ) .000045
n

G z α− ≤  , but the origin is a 

“false” attractor - too close and all is lost.   If  
n

C C n= =     then the last expression 

approximates  

(1 )
1

 0

n

e

ρ−
 

→ 
 

  and convergence occurs.   However, the analogy between these 

infinite compositions and the simple Riemann integral collapses.  Nevertheless, general 

expansions of this nature can be interesting: 

Example:  
1

( ) ( )
n

g z z Sin z
n

= +  ⇒  ( )nG z π→ ,   for 0 9z< <  .   And (10) 3nG π→  .                              
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Figure 5:  Vector field is  ( ) ( )F z Cos z= −   with (1) ( )
1

( ) ( )g z z Cos z z
n

= + − − generating the 

shorter contour and (2)  ( )
1

( ) ( )g z z Cos z z
n

= + − −   generating the longer contour.  

N = 20,000.      Contour (2)  terminates at the attractive fixed point   -.7390.       

Pictures like this reinforce the conjecture that (1) implies that ( )nG z β→  , a point on the 

generated contour that extended would culminate at the attractive fixed point α  the ultimate 

destination of the contour (2). The contours are of course not exactly alike. More about 

( )nG z β→   a little later.                                          

 

Generalization of the Simple Attractor case:  Consider generating functions of the form 

, ,( ) ( )
k n k n

g z z zη ϕ= +   with  ( ) : ( )f z z zϕ= +  and ,lim 0
k n

n
η

→∞
=   for  1,2,...,k n=  .   Write 

, 1, 1,( ) ( )
n n n n n n

G z g g g z−= � ��� .  The condition  ( )   , 0 1f z zα ρ α ρ− < − ≤ <   is probably a 

bit unrealistic and should be generalized by some variant of the inverse-square law of 

attraction. One possibility is: ( )f z zα κ α− ≤ −  where ( )
2

,
1

r z
z

z

α
κ κ α

α

 −
= =  

+ − 
, 0 1r≤ ≤ . 

Then ,  

2

2  ( ) : 1
1

R
z R r R

R
α κ ρ ρ

 
− < ⇒ < = = < 

+ 
.  Of course, if '( ) 1f α <  there is a 

neighborhood of  α  in which  ( )   , 0 1f z zα ρ α ρ− < − ≤ <  . The previous discussion gives 

( )
1

( ) 1 ( , )
n

n n

k

G z z k n z Pα α µ α
=

− ≤ − ⋅ − = − ⋅∏   with ( ) ,( , ) 1
k n

k nµ ρ η= − .  Now, write 
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( )
( , ) ( , )

1

( , )
1

1 ( , )

k n k n

k nk n
e

µ µ

µµ
   

−      
∼   for large values of n.  Hence,  

( )

1

1
, ( ) ( , )

n n

n

k

P n k n
e

σ

σ µ
=

 
= 

 
∑∼ .  Then ( ) ( )nn G zσ α→ ∞ ⇒ →  .    

Example:   , 2

n
k n

C k

n
η =  where 

n
C n=  .                                                              

 

The Superposition of Two Vector Fields:   Suppose a particle z   is subject to two fields at once. 

Write  ( )1 2( ) ( ) ( ) ( )n n
n

c c
g z z z z f z z f z z

n n
ϕ= + = + − + −  or  ( )( ) ( )n

n

c
g z z F z z

n
= + − ,  with 

 ( )1 2( ) ( ) ( )F z f z f z z= + − .  Frequently 1( )f Rα α= ∈   and 2( )β β= ∈f R  ,α β< .  

Assume that [ ]1 2, ,f f C α β∈ . It is easily verified that 1 2( ) ( )f x f x≠ over this interval implies the 

existence of  [ ],µ α β∈  with ( )F µ µ= , possibly an attractor. Then for z’s belonging to a 

neighborhood of µ  it is possible that ( )nG z µ→  provided 
n

c n=  or a similar factor.                                                      

                   

Figure 6:  Superposition of   
2

1 1f z= −   and  2 2

1
f

z
= .   .618, 1α β≈ =  implies  1 0iµ = + . The 

contour (c(n)=square root of n) reaches .99999 . . .+0i .  n=100,000.              
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                                                         Derivatives . . .? 

Although motion comes to a stand-still at “instants” on the time axis, Instantaneous velocity 

does exist as it does when Z is parametrically defined as a differentiable function of time t: Z(t). 

Suppose , ,( ) ( )
k n k n

g z z zη ϕ= +  , continuous, with ,lim 0
k n

n
η

→∞
= .  Let [ ]0,1t ∈  with a finite (or 

truncated) decimal expansion.  For convenience, set  ( ) 1,lim ( )−
→∞

=p

pm mqq
m

Z G z  and , , ( )=
k n k n

Z G z .      

Then   

( ) ( ) ( )( )1 1

,η ϕ− −= + ⋅p p p

p qq q q
Z Z Z   and   ( )1, 2,

, 1,1
η ϕ− −

−

−∆
≈ = ⋅ ⋅

∆

pm qm pm qm

pm qm pm qm

qm

Z ZZ
qm Z

t
.  

Therefore   

         ,limϕ η ϕ
→∞

=

         = ⋅ ⋅ =                 
pm qm

mp
t

q

dZ p p
Z qm Z

dt q q
  if  ,

1
η =

pm qm
qm

    

Note that  , ,( ) ( )
k n k n

g z z zη ϕ= +  does not have to be analytic.       

Example:    ( )( ), 0 0'( )
k n

C
Z t C Z t

n
η ϕ= ⇒ =  

Example:   ( )( ), 0 0 02
'( )

k n

k
C Z t Ct Z t

n
η ϕ= ⇒ = .                                          

Example:  ,k n

C

n
η =   ,  

1
( )f z z

z
= +  ,  

1
( )z

z
ϕ =  , 100C = , 1 5z i= + , 0 .235t =        

⇒        

0

19.6 4
t t

dZ
i

dt =

 
≈ − 

 
    ( 100,000n = ).                                   

 

More on integrals . . . 

To evaluate a contour integral of a function  T(z)  along the generated contour, there is the 

following:  ( ) ( ) ( )1, 1,

1( )

lim
n

k n k n
n

kz

C
T d T Z Z

n
γ

ζ ζ ϕ− −
→∞

=

 =  ∑∫� .       

Also,                     ( ) ( )
1

2

( ) 0

( )
z

d C Z t dt
γ

ϕ ζ ζ ϕ=∫ ∫� .                  Both with ,k n

C

n
η = .              
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Figure 7:  ( )f x iy xCosy iySinx+ = + (non-analytic). The contour from 9+2i , terminates at the 

attractor Z(1)=4.1282 0i+ ,   ,k n

C

n
η =   using C=10.   The shorter contour terminates at

(.03) 6.0191 1.7677Z i= + , at which point  .3097
dy

dx
≈  and  

.3

71.9664 22.2912
t

dZ
i

dt =

 
≈ − − 

 
 .   

The length and integral value for the longer contour are:  ( )(9 2 ) 5.7341L iγ + ≈    and   

( ) 34.334 12.2916z dz i
γ

ϕ ≈ +∫�  .            n=100,000      

A Continuum of Attractors . . . 

For this discussion, consider an interval on the positive real axis, composed entirely of attractive 

fixed points of  ( )f z , (continuous but not analytic – if it were the identity function would 

result!).   

Furthermore, assume a uniform measure of attractive force (at least close to the x-axis):               

                                ( ) ( )f x iy x x iy x yρ ρ+ − ≤ + − = .   

In addition, we specify that  x and y  are in the first quadrant of the complex plane  �  . 

Set   
, , , ( )k n k n k nU iV G z+ =  , and 0 0U iV x iy+ = + .  Figure 7  shows such a field  F , with 

streamlines flowing diagonally down towards the right . A Zeno contour will follow the force 

field -  so the only question is whether the contour terminates early, or leads to a point on the 

axis, or travels beyond the axis.  An open question is whether different generators  
,k nη  produce 

slightly different contours, terminating at slightly different attractors.       

To this end, we use the previous result concerning a single attractor:   
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Thus, with 
, ( , )k n k nµ µ= ,    ( )1, 0 1, 0( ) 1

n n
G z U Vµ− ≤ − ⋅  ,  

( ) ( ) ( )( )2, 1, 2, 1, 1, 2, 1, 0 2, 1, 0( ) 1 ( ) 1 ( ) 1 1
n n n n n n n n n

G z U G z U G z U Vµ µ µ µ− ≤ − − < − − ≤ − − ⋅     . . 

Leading to    ( ), , 0 , ,

1 1

1
( ) 1 0,   if  

nn n

n n n n k n n k n

k k

G z U V
e

σ

µ σ µ
= =

 
− < ⋅ − → = → ∞ 

 
∏ ∑∼  .       

It is an easy matter to verify that the following criteria establish the basic inequality mentioned 

above: 

Let  ( ) ( ) ( , ) ( , )f z f x iy U x y iV x y= + = +  and specify that for some interval on the positive real 

axis and for values of  y  sufficiently small  the following hold:   

                             1U x c y− ≤   and  2V c y≤ , with  2 2

1 2 1c c+ < .      

Then                   ( )f z x z xρ− ≤ −       

 

                                                         

Figure 7:     ( ) ( )2( ) .3 .3 ( )f x iy x y i ySin x+ = + + , a non-conservative vector field, with each 

point on the positive real axis an attractor. ,

1
k n

n
η =   with 

6
10n =  produces ( )2 4 3.315G i+ = .     
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Figure 8:  
2 2

( ) ( ) ( )f z xCos y iySin x= + ,  
,

10
k n

n
η = ,   100,000n = . Z=8+7i.  Blue contour ends at  

(.3)Z  . Continuum of attractors on the real axis.   Here,  .4259 0iα = +  with ( ) 11.66L γ ≈   and  

11.48 56.05dz i
γ

ϕ ≈ +∫� .               

 

Generalization of a continuum of attractors . . . 

If one wishes to construct a vector field having curves other than portions of the real axis as 

attractors life can become a bit more complicated. Two conditions underlie much of what 

follows: (a) zeno contours must (ultimately) be normal to the curve of attractors, and (b) the 

condition ( ) ( ) ( ) ,0 1f z z z zα ρ α ρ− ≤ − ≤ <  holds, where ( )zα  is the attractor for each z .               

First, consider two simple cases: 

(1)  { }:C z x y= =   and  (2) { }: 1C z z= = .   

(1)  Beginning with a point z x iy= +  off C, one easily finds that the vector normal to C 

terminates at ( )( ) 1
2

x y
z i Cα

+ 
= + ∈ 
 

.  Then, setting  ( )f z U iV= + , the slope of a vector 

perpendicular to C is  -1 , leading to  ( )V U x y= − + +  .  Requiring the inequality in (b) be 

replaced by equality  leads to ( ) ( )( )
1

1 1
2

U x yρ ρ= + + −  and ( ) ( )( )
1

1 1
2

V x yρ ρ= − + +  .     
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(2)    Setting cos , sinx t y t= =  and using simple geometry gives                                     

                           
2 2 2 2

1 1
1U x

x y x y
ρ

  
 = + − 

  + +  

 and  
U

V y
x

= ⋅    . 

For other curvilinear contours of attractors, three equations should be satisfied. Write 

{ }( ) ( ) ( ) :C Z t X t iY t t I= = + ∈   , where it is assumed the curve C has tangent lines at all points. 

Thus for each  z C∉   , ( ) ( )z Z tα =  for some t. 

(i)  ( ) ( )'( ) ( ) '( ) ( ) 0X t X t x Y t Y t y− + − =     (vector normal to C) 

(ii)   ( ) ( )'( ) '( ) 0X t U x Y t V y− + − =       (vector normal to C)   

(iii)  ( ) ( ) ( ) ( )
2 2 2 22( ) ( ) ( ) ( )U X t V Y t X t x Y t yρ  − + − ≤ − + −

 
     (attractive force)   

For even very simple attractor curves, like  { }2( ) : ( ) , ( )C Z t X t t Y t t= = = , the usefulness of 

these three equations might be questionable. However, a simple modification might prove just 

as appropriate: instead of having each vector approach its attractor normally, simply require 

the vector field to have a uniform orientation. In this particular instance, allow the vectors to 

approach the parabola along horizontal streamlines. Then the resulting function is 

( )U y x yρ= + −   and V y=   in the first quadrant.                          
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Behavior near a repelling fixed point . . . 

In Figure 8 the contour snakes around a number of repelling fixed points on its way to an 

attractor. Under limited conditions this behavior can be anticipated.  Assume that β  is such a 

point for the function ( )f z  and that, in a neighborhood of this point,   

( )f z zβ ρ β− ≥ −  for  1ρ > . Furthermore assume that the repeller pushes the value of 

( )f z  into the half-plane defined by  
2

π
θ <   where  

( )
arg

f z

z

β
θ

β

 −
=  − 

 .  Then  if  ( )Secρ θ>  

we have   , ( )
k n

g z zβ β− > −  .   Therefore  , ( )
n n

G z zβ β− > − .  This follows from drawing a 

simple picture in which the various vectors in the equation  

( ) ( ) ( ), , ,( ) 1 ( )
k n k n k n

g z z f zβ η β η β− = − − + −  are examined.  For analytic functions, if 

'( ) 1f β > , writing  
( ) ( )

'( ) ( ) '( ) ( )
f z f

f z f z
z

β
β δ β δ

β

−
= + ≥ −

−
,    ( ) 0zδ →  as z β→ , one 

sees that   ( )f z zβ ρ β− ≥ −  , 1ρ >    if    ( )z Nε β∈  for small enough ε .                                                                

Winding contour . . .? 

Figure 9:   A phenomenon that occurs at some repelling fixed points. 

The following discussion concerns only one possibility.  From 

( ) ( ) ( )( )( ) ( ) ( )
n n n

g z z f z z z f z zη η β β= + − = + − − −  it can be seen 

that circular or moderate outward spiraling motion results from 

( ) ( )arg ( ) arg
4 2

f z z z
π π

β≤ − − − ≤  or  ( )arg '( ) 1
4 2

f
π π

β≤ − ≤  for 

 z β≈ .  This condition is met if  1 Re '( ) 1 Im '( )f fβ β≤ ≤ +  .  In the 

figure to the left  
1

( ) zf z e=  and a repelling fixed point exists at

.072 .2iβ ≈ − + , where  '( ) 1.39 4.40f iβ ≈ + .   
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Locating an attractor using a Zeno contour . . . 

Since the contours terminate at attractors under certain conditions, they can be used to find 

such attractors. 

 

                                        

Figure 10:  
1

( )f z Cos
z

 
=  

 
 ,  ,

1
k n

n
η = ,  100,000n = .  [-2.5,2.5]  .7493 .5224iα ≈ + .                              

 

Locating a repeller using a reverse Zeno contour . . . 

 

Figure 11:  Sometimes it is possible to backtrack to locate a repelling fixed 

point by using a kind of reverse Zeno contour.  That is to say, employ 

( )( ) ( )
n n

g z z z f zη= + −  and compute  ( )nG z  with  z β≈ .  

In the figure to the left (
1

( ) zf z e=  ) the starting point is .1 .25z i= − +  and 

the reverse contour spirals in toward the fixed point which is  

.071 .204iβ ≈ − + .  However, if one starts just a tad too far away this 

approach sends the contour out on a wild ride and nothing is gained. 
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Extending convergence to an attractor for vector fields ,k n
f f→ . . .  

Suppose   , ,( ) ( ) 0
k n k n

f z f z σ− ≤ →  for relevant values of the variable ,1 k n≤ ≤ , n → ∞ . 

And, as before,  ( )f z zα ρ α− ≤ −  or its more general form.   Start with 

                   ( ), , , , ,( ) ( ) ( )
k n k n k n k n k n

g z z z z f z zη ϕ η= + = + −  ,  which can be expressed as 

                            ( )( ) ( ), , , ,( ) 1 ( )
k n k n k n k n

g z z f zα η α η α− = − − + −   

The vector/geometric argument advanced before gives  

             ( )( ), , , ,( ) 1 1 ( ) ( )
k n k n k n k n

g z z f z f zα η ρ α η− ≤ − − − + −  , 

        ( ), , , ,( ) 1
k n k n k n k n

g z zα µ α η σ− ≤ − − + , ( ), , 1
k n k n

µ η ρ= −      Hence         

     ( ) ( )
1

, , , , , ,

1 1 1

( ) 1 1α µ α η σ µ η σ
−

= = = +

 
− ≤ − ⋅ − + − + 

 
∏ ∑ ∏

n n n

n k n j n j n k n n n n n

k j k j

G z z              

Thus          ( ), , ,

1 1

( ) 1 1
n n

n k n k n k n

k k

G z zα µ α η σ
= =

− ≤ − ⋅ − + ⋅∏ ∑  ,      Provided ,

1

1
k n

η
ρ

<
−

.      

  As before,    ( )
,

1

,

1

1
1   

n

k n

k

n

k n

k e

µ

µ
=

=

∑
 

−  
 

∏ ∼ .    Therefore, requiring  
, ,

1

0
n

k n k n

k

η σ
=

→∑   and  

,

1

n

k n

k

µ
=

→ ∞∑       leads to convergence  (at least heuristically!)    

 

Example:    , 2k n n

k
c

n
η =  , 

n
c n= ,  ,

1
k n

n
σ =  .                                                    
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Inner vs outer iterations . . . 

 

Up to this point the compositional structure of the Zeno contour or sequence has followed the 

pattern  , , 1, 1,( ) ( )
k n k n k n n

G z g g g z−= � ��� , an outer or backward composition. This follows the 

Zeno’s Arrow illustration by moving from a point to the next point by adding a small increment. 

However, in applications in the analytic theory of continued fractions, going the other way is 

more appropriate. That is to say, consider , 1, 2, ,( ) ( )
k n n n k n

F z g g g z= � ��� , a forward or inner 

composition [6]. 

When  , ( ) ( )n
k n

c
g z z z

n
ϕ= +  there is no difference in the two schemes, but in more complicated 

scenarios there may be; for instance  , 2
( ) ( )n

k n

c k
g z z z

n
ϕ= +  produces differing expansions. 

Nevertheless, the arguments advanced before for outer iteration suffice for inner iteration. 

That is to say, when ( )f z zα ρ α− ≤ −  then  both  , ( )
n n

G z α→   and  , ( )
n n

F z α→ .  The two 

generated contours separate for small values of n, but coalesce as n becomes larger.                                               

 

Figure 12:  ( ) ( )f z z Cos z= + ,  , 2
( ) ( )n

k n

c k
g z z Cos z

n
= +   

Both the yellow contour , ( )
n n

G z α→   and the black contour  

, ( )
n n

F z α→  where  1.57079...
2

π
α = =   .                

100,000n =   and  
n

c n=  .                       
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Premature termination of Zeno contours . . . 

It has been nominally established that ,

1
k n

n
η =   forces the contour to terminate at an 

attractor, while  ,k n

C

n
η =   seems to cause the contour to terminate early.  Suppose  

( ) ( )( )f z z zα ρ α− = − ,where ( ) 1zρ <  for z  close to α  but as the Zeno contour path follows 

a streamline it moves into a region where   ( )f z zα ρ α− < − , 1ρ > .   

Seeking a lower bound of  ( )
n
g z α−  we add vectors so that  

( ) ( ) ( ) ( ) ( )( )( ) 1 1 1 1
n n

C C C
g z z z z z

n n n
α α ρ α ρ α µ α

   
− = − − − − = − + − = − −   

   
 

 From an original 0
z  one obtains   ( ) ( )

(1 )
1

0 0( ) 1 n

C

n nG z z

ρ

µα µ α
+

 
− = − −  

  .                             

Thus  ( )
(1 )

0 0

1
( )

C

nG z z
e

ρ

α α
+

 
− ⋅ − 

 
∼   for largen for a scenario minimizing ( )nG z α− .              

These are merely imprecise ramblings, of course.  

Figure 13: ( ) ( )f z Cos z= − . One contour, ,

1
k n

n
η =  , terminates at the attractor .7391...α = −  , 

while the second, ,k n

C

n
η = ,  C=1, ends prematurely. Both contours follow a streamline closely.                     
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