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ABSTRACT:  Inner Composition of analytic functions ( 1 2 nf f f (z)� ��� ) and Outer 

Composition of analytic functions ( n n 1 1f f f (z)−� ��� ) are variations on simple iteration, 

and their convergence behaviors may reflect that of simple iteration of a contraction 

mapping described by Henrici [3]. Investigations of the more complicated structures   

1,n 2,n n,nf f f (z)� ���   and  n,n n 1,n 1,nf f f (z)−� ���  lead to extensions of the classical 

Tannery's Theorem [1]. A variety of examples and original minor theorems related to the 

topic are presented. The paper is devised in the spirit of elementary classical analysis and 

much is accessible to serious undergraduate majors; there is little reference to modern, or 

"soft" analysis.   [AMS Subject Classifications 40A30, primary,30E99, secondary. October 2010]    

 

 

1. Preliminaries:   

 

Tannery's Theorem [1] provides sufficient conditions on the series-like expression  S(n) 

= 1 2 na (n) a (n) a (n)+ + +�  that it converge to the limit of the series 1 2a a+ +�  , when   

k k
n
lim a (n) a

→∞
=   for each k. In fact, the original theorem provided this result for a more 

general series-like expansion ,  S(p,n) = 1 2 pa (n) a (n) a (n)+ + +�  ,  where it is 

understood that  p tends steadily to infinity with n. In this and subsequent notes p will be 

taken to be n. 

 

              _______________________________________________ 

 

Tannery's Theorem (series):   Suppose that  S(n) = 1 2 na (n) a (n) a (n)+ + +� ,  where  

k k
n
lim a (n) a

→∞
=  for each k. Furthermore, assume k k ka (n) M   with   M≤ < ∞∑ . 

                        Then  1 2
n
limS(n) a a   , convergent.

→∞
= + +�   

             ________________________________________________ 

 

Proof:  (sketch) Write  

             

( )1 2 n 1 2 n
p n n

k k k k

k=1 k p 1 k p 1

a (n) a (n) a (n) a a a

 a (n) a a (n) a
= + = +

+ + + − + + +

≤ − + +∑ ∑ ∑

� �

   , 

          Etc. || 

 

 

 



Setting  k,n kf (z) a (n) z= +  ,  then one may write   

                

                    S(n) = 1,n 2,n n,nf f f (0)� ��� ,  or    S(n) = n,n n 1,n 1,nf f f (0)−� ��� .   

 

Comment:  The hypotheses can be weakened – see Tannery's Theorem Potpourri. 

 

The classical Tannery theory can easily be extended to infinite products: 

 

     ____________________________________________________ 

Tannery's Theorem (products):    Suppose that  
n

k

k 1

P(n) (1 a (n))
=

= +∏ .  If  

k k
n
lim a (n) a

→∞
= ,  and  k k ka (n) M   with   M≤ < ∞∑ , then  k

n
k 1

lim P(n) (1 a )
∞

→∞
=

= +∏ . 

    _____________________________________________________ 

 

Proof:  (sketch)  ( ) kln(1 a (n))

k

3 1
1 a (n)  = e   ,  ln(1+z) z  if  z

2 2

+∑+ < <∏  

Apply  Tannery's Theorem for series . . .  || 

 

 

However, the original theorem is less adaptable to more exotic expansions like continued 

fractions:  

                               C(n) =  1 2 n
  

a (n) a (n) a (n)
   

1 1 1+ +
� ,  

which can be expressed as 

 

                  C(n) = 1,n 2,n n,nf f f (0)� ��� ,     with    k
k,n

a (n)
f (z)

1 z
=

+
 .  

 

 

Nevertheless, a unifying principle applicable to a variety of expansions exists if we 

restrict our attention to scenarios in which all functions n k,nf (z)  and  f   map simply-

connected domain into a compact subset of itself.  A simple example of the kinds of 

possible extensions of classical Tannery's Theorem is the following (theory developed 

later in this paper): 

 

Example:  The continued fraction  1 2 n
k

a a a 1
    as  n  , if  a

1 1 1 4
→ λ → ∞ <

+ + +�
 

Suppose  k k
n
lim a (n) a    for each  k n

→∞
= ≤   and   k

1
a (n)   for all such terms

4
< . 

    Then               1 2 na (n) a (n) a (n)
    as  n  

1 1 1
→ λ → ∞

+ + +�
 

 



   

A continuous analog of the Tannery Theorem is the following: 

      __________________________________________________________ 

 

Tannery's Theorem (continuous)[2]:   [Let n{f (x)} be a sequence of functions 

continuous on R].  Suppose  n
n
lim f (x) g(x)

→∞
=  uniformly in any fixed  interval, and there 

exists a positive function  M(x) where  n

a

f (x) M(x)   and   M(x)dx   converges.

∞

≤ ∫   

Then                           

n

n
n

a a

lim f (x)dx  g(x)dx

∞

→∞
=∫ ∫   .   

 

       _________________________________________________________ 

       _________________________________________________________ 

 

 

The classical Tannery's Theorem provides the following result: 

 

           ( )1 2 n 1 2 n
n n n n
lim a (n) a (n) a (n)   lim a (n) lim a (n) lim a (n)

→∞ →∞ →∞ →∞
+ + + = + + +� �  

 

The generalizations described here take the forms: 

 

             

1,n 2,n n.n 1,n 2,n n,n
n n n n

n,n n-1,n 1,n n,n n 1,n 1,n
n n n n

lim  t t t (z)  =  lim t lim t lim t (z)

                                or

lim  t t t (z)  =  lim t lim t lim t (z)

→∞ →∞ →∞ →∞

−
→∞ →∞ →∞ →∞

� ��� � ���

� ��� � ���

 

 

Additional theory addresses scenarios in which the distribution of limits shown above 

does not occur (e.g., the Riemann Integral) . . .  making mathematical life a bit more 

interesting. 

                                             .   .   .    
   2. Extending Tannery's Theorem to Inner Composition with Contractions 

 
By contractions is meant the following domain contractions: 

      __________________________________________________________ 

 

Theorem (Henrici [1], 1974).   Let f be analytic in a simply-connected region S and continuous on the 

closure S' of S. Suppose f(S') is a bounded set contained in S. Then nf (z) f f f (z)= → α� ���  , the 

attractive fixed point of f in S, for all z in S'.   

     ___________________________________________________________ 

 



This result can be extended to forward iteration (or  inner composition) involving a 

sequence of functions: 

   ___________________________________________________ 

 
Theorem 2.1:(Lorentzen, [5],1990 )   Let  n{f }  be a sequence of functions analytic on a 

simply-connected domain D. Suppose there exists a compact set DΩ ⊂  such that for 

each n, nf (D) ⊂ Ω . Then  n 1 2 nF (z) f f f (z)= � ���  converges uniformly in D to a 

constant function F(z) = λ .   

    ___________________________________________________________ 

 
(Note: This result is sometimes called the Lorentzen-Gill Theorem since the second author obtained the 

result in a specific case in previous papers [4], [6]) 

 

The concept underlying Tannery's Theorem extends easily to this setting: 

    ______________________________________________________________ 

 

Theorem 2.2: (Gill, [8],1992)   Let  k,n{f },  1 k n≤ ≤   be a family of functions analytic on 

a simply-connected domain D. Suppose there exists a compact set DΩ ⊂  such that for 

each k and n, k,nf (D) ⊂ Ω  and, in addition, k,n k
n
lim f (z) f (z)

→∞
=  uniformly on D for each k. 

Then , with  p,n 1,n 2,n p,nF (z) f f f (z)= � ��� ,   

 

                         n,nF (z)  , a constant function→ λ ,  as n → ∞ , uniformly on D.    

      ____________________________________________________________ 

 

Comment:  The condition  k,n k
n
lim f (z) f (z)

→∞
= , if discarded, allows the possibility of  

divergence by oscillation:  viz.,  

 

                   {1,n k,n

z.5 if n is odd
f (z)  , otherwise  f (z) ,   on S ( z 1)

.5 if n is even 2
= ≡ = <

−
 .   

 

Proof: Theorem 2.1 defines λ .  Write  p,n p 1,n p 2,n n,nZ f f f (z)+ += � ��� . Then  

                           
n,n p,n p,n

p,n p,n p p,n p p,n

F (z)   F (Z )

                    F (Z ) F (Z )   F (Z )

− λ = − λ

≤ − + − λ
     

 

For the second term in the inequality, choose and fix p sufficiently large that pF (z)
2

ε
− λ <  for all z in 

D.  For the first term, choose n sufficiently large to insure  p,n pF (z) F (z)
2

ε
− <  for all z in D.  This is true 

since a finite composition of functions of the type described above, converging uniformly on D, will also 

converge uniformly on D. || 

 



A Tannery Transformation:  An existing compositional structure  n 1 2 nF (z) f f f (z)= � ���  may be 

transformed using these ideas: 

 

Corollary:  Let  n{f }  be a sequence of functions analytic on a simply-connected domain 

D. Suppose there exists a compact set DΩ ⊂  such that for each n, nf (D) ⊂ Ω . Now 

suppose there exists a sequence of functions analytic on D and depending upon both k 

and n, k,n{t }, such that k,nt (D) ⊂ Ω  and  k,n
n
lim t (z) z

→∞
=  uniformly on D, for each k.  

Then 

                           n 1 1,n 2 2,n n n,nT (z) f t f t f t (z)  = → λ� � � ��� � , 

. 

where  n 1 2 nF (z) f f f (z)= → λ� ��� . 

 

Proof:    Set  k,n k k,ng (z) f (t (z))=   and apply the theorem. || 

  

 

Example:     fixed-point continued fractions   

 

                    1 1 2 2 n n
n

( 1) ( 1) ( 1)
C ( )    . . .  

1   1   1    

α α + α α + α α +
ω =

+ + + ω
 

 

   converges under the following stipulations:   n

1 1
 ,    

5 2
α < ω <  .   The  { nα } are the 

attractive fixed points of the linear fractional transformations  k k
k

( 1)
t ( )   

1

α α +
ω =

+ ω
.  

Thus, one may write  n 1 2 nC ( ) t t t ( )ω = ω� ���  .  (If   n   α ≡ α  ,  then  n
n
lim C ( )  

→∞
ω = α ).   

 

  Writing  1 1 2 2 n n
n,n

(n)( (n) 1) (n)( (n) 1) (n)( (n) 1)
C ( )    . . .  

1   1   1    

α α + α α + α α +
ω =

+ + + ω
 ,  where 

 

k k
n
lim (n)  

→∞
α = α   for each k,  we have    n,n n

n n
lim C ( )  lim C ( )

→∞ →∞
ω = ω . 

 

 

 

 

 

 

 

Example:    Nested logarithms     ( )
1 1 1

Ln 2 Ln 3 Ln 4
2 3 4

  
+ + +  

  
� �  

Here,  k k

1
t (z) Ln(k 1 z) ,  z 1    t (z) 1

k 1
= + + < ⇒ ≤ ρ <

+
 .  Thus, 



1 nt t (z)  .438699→��� �  .  Similarly,   

  ( )1 2 k

1 1
Ln 2 a (n) Ln 3 a (n)  , where 1 a (n) 1

2 3

 
⋅ + ⋅ + ≤ → 

 
� � , converges to the same 

limit. The obvious choice for an initial value of z is 0.  

 

 

Example:  Iteration of  Functions defined by Infinite Integrals   

       

          

n

k k k,n k

0 0

t (z) (t, z)dt    or    t (z) (t, z)dt

∞

= ϕ = ϕ∫ ∫  

For instance:  

n

k,n

0

t(k 1 z)t (z) e dt ,  z 1.− + +ε+= <∫   Giving rise to a complicated expansion 

that converges to the limit of the continued fraction: 

 

                             1,n n,n

1
t t (z)     

1
2+ +

1
3+ +

4+

→

ε

ε
ε
�

���     

 

                                                             .   .   .    
 

Extending Tannery's Theorem to Inner Compositions without Contractions 

 

         ____________________________________________________ 

 

Theorem 2.3: (Gill, 2011) Consider  sequences of polynomials converging to entire 

functions:  2 3 n

k,n 2,k 3,k n,kf (z) z a z a z a z= + + + +� kf (z) as n→ → ∞    for k=1,2,3, . . .  

Set  2 3 n

k,n 2,k 3,k n,k(z) z a (n)z a (n)z a (n)zφ = + + + +�  where j,k j,k
n
lim a (n) a    k,j

→∞
= ∀ , 

j 1

j,k ka (n) −< ρ  for all n ,  and  k

k 1

∞

=

ρ < ∞∑ .  Next,  set   k 1 2 kF (z) f f f (z)= � ���  ,  where  

k
k

F(z) lim F (z)
→∞

=  , and p,n 1,n 2,n p,n(z) (z)Φ = φ φ φ� ��� , p,n p 1,n p 2,n n,nZ (z)+ += φ φ φ� ��� . 

Then   

                                  n,n
n
lim (z) F(z)

→∞
Φ = . 

      _______________________________________________________ 

 

Outline of Proof:   Consider  z R≤ .   Then,  k,n

k k

z R
(z)

1 z 1 R
φ ≤ ≤

− ρ − ρ
,    which may 

be repeated to give  p,n 0Z R 2R≤ = .  The original Tannery's Theorem shows that   



k,n k 0(z) f (z)  uniformly on ( z R )φ → ≤ = S.   As in Kojima's Theorem [10], 

2

p

p,n

p

z
(z) z

1 z

ρ
φ − ≤

− ρ
, which may be used to prove that     

            2

p,n 0 k

k p 1

Z z 2R 0 as p
∞

= +

− ≤ ⋅ ρ → → ∞∑ .  

 

Writing        

n,n p,n p,n p p,n

p p,n p,n

p,n

(z) F(z) (Z ) F (Z )

                                    +  F (Z ) F(Z )

                                               +  F(Z ) F(Z)

Φ − ≤ Φ −

−

−

 

choose p so large that each of the last two expressions are less than 
3

ε
 (functions 

converge uniformly on S ) . Then choose n so large that the first is less than 
3

ε
.   

Therefore  n,n (z) F(z)
3 3 3

ε ε ε
Φ − < + + = ε   ||  

 

 

 

 

 

 

 

   ___________________________________________________________ 

 

Theorem 2.4 :  Let  S be a simply-connected domain and  k,n{t } , k n≤ ,  a sequence of 

functions analytic in S  where  k,nt (S) S⊂  and  k,n kt (z) t (z)→  for each k  Suppose that  

(a)   k,n k kt (z) t (z) (n) 0 , as  n− < ε → → ∞   for all z in S,  and 

(b)   k 1 k 2 k 1 2 1 2t (z ) t (z ) z z   ,  z ,z  in S− < ρ − ∀ . 

Then       
k 1n

1,n 2,n n,n 1 2 n j k

k 1 j 0

t t t (z)  t t t (z)   (n)
−

= =

 
− < ρ ε 

 
∑ ∏� ��� � ���  

    ___________________________________________________________ 

 

 

 

 

 

Proof:   Set   p,n p,n p 1,n n,n p,n p p 1 nt t t (z)   and   t t t (z)+ +Φ = Ψ =� ��� � ���  

 

Then    

 



     

1,n 1,n 1,n 2,n 1 2,n 1 2,n 1 2,n

1 1 2,n 2,n

1 1 2,n 3,n 2 3,n 2 3,n 2 3,n

  t ( ) t ( )   t ( ) t ( )

                   <    (n)  

                   <    (n) t ( ) t ( ) t ( ) t ( )

                    
             

Φ − Ψ ≤ Φ − Φ + Φ − Ψ

ε + ρ Φ − Ψ

 ε + ρ Φ − Φ + Φ − Ψ 
i

k-1n

j k

k=1 j=0

       
                    

                    <    (n)
 

ρ ε 
 

∑ ∏

i

i

 

 

Since the values of  { kρ } are not necessarily less than one,  { 1,n (z)Ψ } might diverge  and  

{ 1,n (z)Φ }  simply track that sequence, assuming  k,n kt t→   rapidly enough. || 

 

                                      Tannery Continued Fractions 

 

Example:  Consider the Tannery C-Fraction expansion: 

 

                       1 2 n

  

C (n)z C (n)z C (n)z

1 1 1+ + +�
 

 

Here  k
k,n k

C (n)z
t (w)   ,  with  w r 1 ,  z R ,  and  C (n) < C 

1 w
= < < <

+
.  

 

 k,n

CR r(1-r)
t (w)   with   R < 

1 r C
<

−
  insures  k,nt (w) r   when w r< < . 

 

From (a) of Theorem 2.4 ,  k,n k k k k

R R
t (w) t (w)  C (n) C  <  (n)

1 r 1 r
− < − σ

− −
,  and 

 

(b)   k,n 1 k,n 2 2

CR
t (w ) t (w )    =  

(1-r)
− < ρ .  Therefore   

 

           
n

k 1

1,n 2,n n,n 1 2 n k

k 1

R
t t t (z)  t t t (z)    (n)

1-r

−

=

− < ρ σ∑� ��� � ��� .   

 

To illustrate, let  k k3

1 1 k
r  ,  R=  ,  C=1 ,  (n)= .   Hence  1

2 4 n
= σ ρ ≡ .   

 

This gives, after a few calculations,   

 



 

 1 2 n 1 2 n

    

C (n)z C (n)z C (n)z C z C z C z 1 1
     < 1   0

1 1 1 1 1 1 4n n+ + + + + +

 
− + → 

 � �
, so that  

 

        1 2 n
n   

C (n)z C (n)z C (n)z
F (z) =     F(z) , analytic in z R

1 1 1+ + +
→ <

�
. 

 

 

Example:         Variation on Continuous Analogue of Tannery's Theorem  

 

Employing Theorem 2.4,  set  

k k

k,n k

k 1 k 1

t (z) f (x,n)dx + z ,   and   t (z) g(x)dx + z
− −

= =∫ ∫  , 

with  
n
lim F(x, n) g(x)

→∞
= .  Then  k,n k k

k 1 x k
t (z) t (z) Max f (x, n) g(x)   =  (n)

− ≤ ≤
− ≤ − ε  

and  k 1 k 2 1 2 kt (z ) t (z ) z z     1− = − ⇒ ρ ≡  .   Thus, 

                                            

n n n

k

k 10 o

f (x, n)dx g(x)dx   (n)
=

− ≤ ε∑∫ ∫     

If the sum tends to zero, the first integral grows closer to the second, even if the second 

integral diverges.  

 

Example:   

n

3

0

1
sin(x (n))dx ,  where , e.g.,  (n)

n
+ σ σ <∫ ,  approximates to any required 

degree of accuracy the divergent integral  

n

0

sin(x)dx∫  

 

                          Repeated Roots: extending Tannery's idea 

 

Corollary:  Consider the following composition of roots: 

 

                            n,n 1 2 3 nR (n) (n) (n) (n)= σ + σ + σ + + σ� , where  

     

all entries are positive real numbers. When does 

 

                                      n,n 1 2 n
n

R  lim
→∞

→ σ + σ + + σ�      ? 

 

Applying Theorem 2.4 ,  set  k,n kt (z) (n) z  ,  z 0= σ + ≥ ,  

 

                    k k k k k(n),    M(k) 0,   and  (n) (n)  0σ σ ≥ > σ − σ < δ →  .  

 



Then conditions (a) and (b) assume the forms 

(a) 
k k k

k,n k k k k

k k

(n) (n)1
t (z) t (z)     (n) (n)

2M(k) 2M(k)(n)

σ − σ δ
− ≤ ≤ σ − σ < = ε

σ + σ
, 

(b) k 1 k 2 1 2 k 1 2

1
t (z ) t (z ) z z z z

2M(k)
− ≤ − = ρ −  

Hence 

             
kn

k
1,n n,n 1 n k

k 1 j 1

(n)1
t t (0) t t (0)   

M( j) 2= =

δ
− < ⋅∑∏��� ��� . 

 

Example: 
1 1 1

1 2 3     1 2 3    0
n n n

+ + + + + + − + + + →� � . 

 

We find that 

                     
n

1,n n,n 1 n k
k 1

1 1
t t (0) t t (0)      0

n 2 k!=

− < →∑��� ��� . 

 

 

Example:    (trivial), from Example 4 above:  Definite Integrals  :    

 

Given  k k

1 k
C[0,1]   and   a (n)  ( )  <  (n)

n n
φ∈ − φ ε  , where  

n

k

k 1

(n)    0  
=

ε →∑ .       Then        

                                        

1n

k

k 1 0

a (n)    (t) dt  
=

→ φ∑ ∫ .   

 

Example:  
2

2

3

1 k k
(t) t      ( )  

n n n
φ = ⇒ φ =   ,  hence  

12n
2

3
k 1 0

k n 1
   t dt = 

n 3=

+
→∑ ∫  

 

 

Example:                Exponential Expansion  

  

      n,n 1,n 2,n n,n k,n

kz nz 1
T (z) t t t (z) ,  where   t (z) e  ,  n 2 , z 1

n 6
= = + ≥ ≤� ��� .  

   Hence   k,n k 1

5
t (z) 1 , 0 ,  and   (n) 0

3n
< ρ ≡ ε < →  . 

Thus       k,n k n,n

1 1
t (z)  t (z)     and   Theorem 7  T (z)

6 6
→ ≡ ⇒ →  . 

 

                                             .    .    .    

 

Related to Theorem 2.4 is the following result:  

 



__________________________________________________________________ 

 

Theorem 2.5 (Gill 2011)  Consider the nested sets  ( )S z R= ≤ , ( )1 1S z R= ≤ , 

( )2 2S z R= ≤  where  1

C
R R

1

ρ
= +

− ρ
 and  2

2C
R R

1

ρ
= +

− ρ
.  Let k,n{f } be a family of 

functions analytic on 2S   and 0 1≤ ρ < ,   where: 

 

(1)  k

k,nf (z) z C− ≤ ρ  on 2S    and     (2)  k,n kf (z) f (z) as n→ → ∞  , uniformly on 2S . 

 

Set  p,n p 1,n p 2,n n,nZ f f f (z)+ += � ��� , p,n 1,n 2,n p,nF (z) f f f (z)= � ��� , and  

n 1 2 nF (z) f f f (z)= � ��� .  Then there exists a function F(z) analytic on 1S  such that  

 

                nF (z) F(z)→  uniformly on 1S   and   n,nF (z) F(z)→  uniformly on  S.  

_____________________________________________________________________ 

 

 

Sketch of proof:  Theorem 2.6 [11]  shows that  nF (z) F(z)→  uniformly on 1S .  

Next,  for  z S∈ , 

 
n n

n,nf (z) z C R C≤ + ρ ≤ + ρ  

n n 1

n-1,n n,nf f (z) R C C −≤ + ρ + ρ�  

       . 

       . 

       . 

p,n 1Z R≤                      I.e.,  p,n 1Z S∈  . 

 

Now write    ( ) ( ) ( )n,n p,n p,n p p,n p p,nF (z) F(z) F Z F Z   F Z F(z)− ≤ − + −   

Fix p so large that the second term on the right is <
2

ε
. If  n  is sufficiently large 

the first term on the right side is <
2

ε
. Hence, for z S∈ ,  n,nF (z) F(z)→  on S.  || 

 

 

  

 

 

 

 

 

3.  Extending Tannery's Theorem to Outer Composition with Contractions 



       _____________________________________________________________ 

 

Theorem 3.1:  (Henrici [1], 1974).   Let f be analytic in a simply-connected region S and continuous on 

the closure S' of S. Suppose f(S') is a bounded set contained in S. Then nf (z) f f f (z)= → α� ���  , the 

attractive fixed point of f in S, for all z in S'.   

       ______________________________________________________________ 

 

This fundamental result for contraction mappings can be extended to an infinite 

composition of functions arranged as backward iteration (or outer composition) :   

    _______________________________________________________________ 

Theorem 3.2 : [Gill, [7],1991)  Let n{g }be a sequence of functions analytic on a simply-connected 

domain D and continuous on the closure of D. Suppose there exists a compact set  DΩ ⊂  such that 

ng (D) ⊂ Ω  for all n. Define n n n 1 1G (z) g g g (z)−= � ��� .   Then  nG (z) → α  uniformly on the closure 

of  D  if and only if   the sequence of fixed points n{ }α of the n{g } in Ω  converge to the number α .   

________________________________________________________________   

comment:  The existence of the n{ }α  is guaranteed by Theorem 1. Note the simple counter-example   

ng (z) .5= −  for n odd  and  ng (z) .5=  for n even, in the unit disk (|z|<1). It is not essential that  ng g→ , 

although that is usually the case.  If  ng g→ ,   then  nα → α .   

 

Example:      let   

zz z
ee e

84 12G(z)  
3 z 3 z 3 z+ + +

=
+ + +

…    ,  where  z 1≤ .  We solve the continued fraction 

equation   G( )  α = α     in the following way:  Set  
z

n n 1 2 n

e 4n
t ( )   ;  let  g (z) t t t (0)

3 z
ξ = =

+ + ξ
� ��� . 

Now  calculate  n n n 1 1G (z)  g g g (z) −= � ��� ,  starting   with  z = 1.  One obtains  .087118118α = �   

to ten decimal places after ten iterations [7]. 

 

Next, consider a sequence of functions k,n{g } dependent upon both k and n and defined on a suitable 

domain D.  Define p,n p,n p 1,n 1,nG (z) g g g (z)−= � ��� ,  with  p n≤ . 

      _______________________________________________________ 

 
Theorem 3.3:  Suppose k,n{g }, with  k n≤ ,  is a family of functions analytic on a simply-connected 

domain D and continuous on its closure, with k,ng (D) ⊂ Ω , a compact subset of D, for all k and n.  

Then   

                   n,n n,n n 1,n 1,nG (z)  g g g (z)  −= → α� ���   uniformly on the closure of D  

                                                           if and only if   

                        the sequence of fixed points k,n{ }α  of  k,n{g } converge* to α .      

    ___________________________________________________________________ 

 

 

 



Comments:  When k,n k
n
lim g (z)  g (z)

→∞
= ,  for each value of  k,  both sequences converge to the limit 

described in theorem 2. * k,nFor >0   N=N( )  N<k n   ε ∃ ε ∋ ≤ ⇒ α − α < ε     

 

 

Proof:  The proof (of sufficiency) is similar to that of theorem 3.2.  

 

Set  D = (|z|<1).  Let  
z

(z) :
1 z

− α
Φ =

− α
 .  Then  : D DΦ →  is analytic there, with  ( ) 0Φ α =  and  

1(0)−Φ = α  .  Set  1

k,n k,nq (z) g (z)−= Φ Φ� �  .   

 

Lemma :  k,nq (0) 0→   as both  k, n → ∞ .   

Proof of Lemma:   This result will follow if  k,ng ( )α → α .  Write 

 

(1)   
k ,n k ,n k ,n k ,n k ,ng ( ) g ( ) g ( )α − α ≤ α − α + α − α  

 

For 0ε >  ,  choose K and N such that  k>K  and  n>N  imply each term of the right side of  (1)  

is less than  
2

ε
.  This is possible for the first term because the k,n{g } are uniformly bounded on D, thus 

equicontinuous there.   Hence  k,nq (0) 0→  as  k, n → ∞ . 

 

Now, the existence of the compact set Ω  implies  k,ng (z) 1≤ µ <  for all z in D. Thus 

(2)                                                    k,n
k,n z 1

Sup(Sup q (z) 1
<

= ρ <            exists.  

 

Since  k,nq (0) 0→  as  k, n → ∞ ,  there exists a sequence  k,n{ }ε  such that  k,n0 0≤ ε →  as k, n → ∞ , 

and  k,n K,Nq (0) ≤ ε   for all  k>K  and  n>N.      (E.g., set  K,N k,n
k K,n N

Sup q (0)
> >

ε = ) 

Set  
k,n

k,n

q (z)
H (z) =

ρ
.  Then  k,nH (z) 1<   for all   |z|<1.   An application of Schwartz's Lemma [3] 

gives 

                 
k,n

k,n k,n

k,n

H (0) z
H (z) H (0) z

1 H (0) z

+
≤ ≤ +

+ ⋅
.         

Therefore 

 

(3)            k,n k,nq (z) q (0) z≤ + ρ  . 

 

Next,  set  k,n k,n k 1,n 1,nQ (z) q q q (z)−= � ���  for all k and n.    Then from (2), 

 

(4)              k,nQ (z) 1< ρ <   for all k and n.  



 

Writing p = n + m ,  begin an inductive procedure with an arbitrary but large value of n, with the goal of 

proving that   p,pQ (z) 0→   as  p tends to infinity.  Employing backward recursion, using (3) and (4): 

 

              n m,n m n m,n m n m 1,n m n m,n m n m 1,n m n,n n m 1,n mQ (z) q (Q (z)) q (0) Q (z) Q (z)+ + + + + − + + + + − + + − += ≤ + ρ < ε + ρ  

                                   n,n n m 1,n m n m 2,n m{q (0) Q (z)}+ − + + − +≤ ε + ρ + ρ  

                                   2

n,n n,n n m 2,n mQ (z)+ − +< ε + ρε + ρ  

                                   2

n,n n m 2,n m n m 3,n m(1 ) {q (0) Q (z)}+ − + + − +≤ ε + ρ + ρ + ρ  

                                   2 3

n,n n,n n m 3,n m(1 ) Q (z)+ − +< ε + ρ + ε ρ + ρ  

                                   2 3

n,n n m 3,n m n m 4,n m(1 ) {q (0) Q (z)}+ − + + − +≤ ε + ρ + ρ + ρ + ρ  

                                   2 3 4

n,n n m 4,n m(1 ) Q (z)+ − +< ε + ρ + ρ + ρ + ρ  

                                                . 

                                                . 

                                                . 

                                   
n,n m 1

n 1,n mQ (z)
1

−
+ +

ε
< + ρ

− ρ
    

n,n m

1

ε
< + ρ

− ρ
 

 

Thus, if  n  and  m  are large enough (p is large enough) both terms of the last expression can be made as 

small as one wishes.  Hence   p,pQ (z) 0→   as p tends to infinity. It follows immediately that   

n,nG (z) → α   for all z in D.  It is a simple matter to extend these results to more general simply-

connected domains, D, by using appropriate Riemann Mapping Functions. || 

 

 

 

 

Example:   The modified  fixed-point continued fraction  seen before 

 

                    1 1 2 2 n n
n

( 1) ( 1) ( 1)
C ( )    . . .  

1   1   1    

α α + α α + α α +
ω =

+ + + ω
 

 

can be reconfigured to give a modified reverse fixed-point continued fraction:  

 

                   n n n 1 n 1 1 1
n

( 1) ( 1) ( 1)
G ( )    . . .  

1   1   1    

− −α α + α α + α α +
ω =

+ + + ω
 

 convergent when  n

1 1
 ,    

5 2
α < ω <  ,  and  n

n
lim   

→∞
α = α .   The  { nα } are the attractive 

fixed points of the linear fractional transformations  k k
k

( 1)
t ( )   

1

α α +
ω =

+ ω
.   

Thus, one may write  n n n 1 1G ( ) t t t ( )      ,   as  n−ω = ω → α → ∞� ��� . 



  

Setting    n n n 1 n 1 1 1
n,n

(n)( (n) 1) (n)( (n) 1) (n)( (n) 1)
G ( )    . . .  

1   1   1    

− −α α + α α + α α +
ω =

+ + + ω
 ,   

where   k
k,n
lim (n)  

→∞
α = α  ,   we have     

 

                                n,n n
n n
lim G ( )  lim G ( )  =  

→∞ →∞
ω = ω α . 

 

 

The following result extends the scope of Theorem 3.3 somewhat: 

 

   __________________________________________________________________ 

 

Theorem 3.3a:  Suppose k,n{g ( , z)}ζ , with  k n≤ ,  is a sequence of functions analytic with respect to  z  

on a simply-connected domain, D, for each Sζ ∈ , a second simply-connected domain, with  

k,ng (S, D) ⊂ Ω , a compact subset of D, for all k and n.  Let the sequence of fixed points k,n{ ( )}α ζ  of  

k,n{g } converge to ( )α ζ  uniformly on S. (I.e.,  k,nα → α  as both k and n → ∞  , with k n≤ ). Then   

                          n,n n,n n 1,n 1,nG (z)  g g g (z)  ( )−= → α ζ� ���   uniformly on S D×  

  ___________________________________________________________________ 

 

                                                   .   .   .   
 

4. Extending Results for Outer Composition without Contractions  

     ___________________________________________________________ 

 

Theorem 4.1:   Let n{g }be a sequence of functions analytic on a simply-connected 

domain D.  Let ng (D) D⊂  for all n.    Suppose there exists a sequence of fixed points 

n{ }α of the n{g } in D converging to a number α , and  

k k k k k k k(1)  g (z) z  , 0 1  and  (2) - 0− α ≤ ρ − α ≤ ρ < α α < ε →       

 

then  , setting  n,n p n p n p 1 nH (z) g g g (z)+ + + −= � ��� ,   

 

         
n p n pn+p-1

n,n p k k j n p

k=nk n j k 1

H (z)   z  + 2   2
+ +

+ +
= = +

− α ≤ − α ⋅ ρ ε ⋅ ρ + ε∑∏ ∏  

In particular  
n nn 1

n 1,n k k j n

11 k 1

G (z) H (z) z 2 2
−

+

 
− α = − α = − α ρ + ε ρ + ε 

 
∑∏ ∏  

    _____________________________________________________________ 

 

Proof:  The repeated application of the inequality  

  



  n n n ng (z) g (z)− α ≤ − α + α − α    and use of the fact that  k 1ρ <  are sufficient. || 

 

Comment:  The simple example in which  k k 2

1 1
1    and   

k k
ρ = − ε =   for  D=(|z|<1)  lies 

outside the context of  Theorem 3.2 , and  yields, after simplification, 

 

            n 2

1 2 1 1 1 2
G (z) z   0  as  n

n 1 n 1 2 3 n 1 n

 
− α < − α + + + + + → → ∞ 

+ + − 
�    

 

 

Example:   Let  k k 1
k 2

( 1)
g (z) ,  with  D = {z:|z|< }

1 z

α α +
=

+
.   

Set 

      k k k

2 1 1 1
 .  Then  -   and  g (D) D.

2 k 4 k 4

−
α = − α α = ⊆

+ +
   And 

   

k
k

1

1 z 2

α
ρ = <

+
,   

1
4

kg (z) g(z)
1 z

→ =
+

 .  Thus, after simplification, 

 

         
( )n n 2 n 1

1 1 1 1 2
G (z) z 2

2 2 n 3 2 (n 2) 2 (5) n 4−

  
− α < − α + + + + 

+ + +  
�  =  E(n) 

 

Applying  the original Tannery's Theorem to the series component shows  E(n) tends to 

zero as n becomes infinite.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Extending the result above to Tannery continuous compositions, we have     

_____________________________________________________________ 

 

Theorem 4.2 :  Let n{g }be a sequence of functions analytic on a simply-connected 

domain D.  Let ng (D) D⊂  for all n. Define n n n 1 1G (z)  g g g (z) −= � ��� . Suppose there 

exists a sequence of fixed points n{ }α of the n{g } in D converging to a number α , and  

suppose k,n{g }, with  k n≤ ,  is a sequence of functions analytic on a simply-connected 

domain D, with k,ng (D) D⊂ , and p,n p,n p 1,n 1,nG (z) g g g (z)−= � ��� . Assume further  

(1)    k,n k kg (z) g (z) (n) 0 as n− < σ → → ∞    

(2)    n 1 n 2 n 1 2 ng ( ) g ( )  ,   0 1 ζ − ζ < ρ ζ − ζ ≤ ρ <  

(3)    n n 0α − α < ε →  

Then    

n nn-1

n,n k k j n

k=1k 1 j k 1

k k k

G (z)   z  + (n)   (n) , 

 where   (n) (n) 2
= = +

− α ≤ − α ⋅ ρ η ⋅ ρ + η

η = σ + ε

∑∏ ∏  

___________________________________________________________ 

 

Proof:  Write  n,n n,n n nG (z) G (z) G (z) G (z)− α ≤ − + − α  

 

It is easily seen that   

(4)  
nn 1

n,n n n j k

k 1 j k 1

G (z) G (z) (n) (n)
−

= = +

 
− < σ + ρ σ 

 
∑ ∏  

And, from the previous theorem,   

  
n nn-1

n k k j n

k=1k 1 j k 1

G (z)   z  + 2   2
= = +

− α ≤ − α ⋅ ρ ε ⋅ ρ + ε∑∏ ∏ ,   so that 

 

 
n nn-1

n,n k k j n k k k

k=1k 1 j k 1

G (z)   z  + (n)   (n) ,  (n) (n) 2
= = +

− α ≤ − α ⋅ ρ η ⋅ ρ + η η = σ + ε∑∏ ∏  || 

 

 

Example:  Let  k k,n 3

k k k
g (z) ( z) ,  g (z) ( z) ,  -1 z 1

2 2 n
sin sin

π π
= + = + + ≤ ≤  

Then  k k3

k
(n)     and    1

n
σ = ρ ≡ k k3

k
(n)     and    1

n
σ = ρ ≡ .  From  (4)  above,  

4 4

n n (n 1) n 1 n (n 1) 1 1
( ) ( ) (1 ) 0

2 n 2 n 2 2 2n n
sin sin( sin sin(

π − π − π − π
+ + + + − + + < + →� �

 

 

Although neither sequence converges.  



 

 

Another result: 

              _________________________________________________ 

 

Theorem 2.7: (Gill, [11] 2011)  Let  n{g }  be a sequence of complex functions defined 

on 0 0S =(|z| R )≤ .  Suppose there exists a sequence n{ }ρ such that  n

k=1

∞

ρ < ∞∑  and 

n n 0g (z) z C    if  z R− < ρ ≤ .  Set  k

1

C
∞

σ = ρ∑   and  0R R+= σ . Then, for  every  

( )z S z R∈ = ≤ ,  n n n 1 1G (z) g g g (z)   G(z)−= →� ��� , uniformly on compact subsets 

of  S .           

              _________________________________________________ 

 

Which can be extended to another Tannery result: 

        ________________________________________________________ 

 

Theorem 2.8: (Gill 2011)  Suppose the functions  k,n{g }  are defined on 0 0S (| z | R )= ≤ , 

n{ }ρ are positive, k

k 1

C
∞

=

σ = ρ∑  converges, and S (| z | R)= ≤ , 0R R+ σ = . Assume 

(1)  k,n kg (z) g (z)→  uniformly on 0S   and  (2)  k,n kg (z) z C− ≤ ρ  there as well.  

Then for  z S∈ ,   

                                    n,n n
n n
lim G (z) G(z) lim G (z)

→∞ →∞
= = . 

 
       _________________________________________________________ 

 

 

Outline of Proof:  Theorem 2.7  shows  n n n n 1 1G G (z) g g g (z) G(z)−= = →� ���  and 

(2)  may be used repeatedly to show  p,n p 1,n 1,n 0g g g (z) R− ≤� ��� .  

Now, write   n,n n,n n nG G G G G G− ≤ − + − ,  in which 

     
n n

n,n n k,n k 1,n k k 1 p,n p

k p 1 k p 1

G G G G G G G G− −
= + = +

− ≤ − + − + −∑ ∑    

                      k p,n p 1,n p p 1,n p p 1,n p p 1

k p

2 g (G ) g (G ) g (G ) g (G )
∞

− − − −
=

≤ ρ + − + −∑  

                      2
12 6 6 2

ε ε ε ε
< ⋅ + + =   if p is chosen large enough to insure k

k p 12

∞

=

ε
ρ <∑ , 

and  then n is large enough to guarantee each of the last two expressions is 
6

ε
< .  

 ( k,n k 0{g }  and  {g }  equicontinuous on S , and  (1) above) 



Thus, for large n,    nG G
2

ε
− <   and the proof is complete. || 

 

                                                             .    .    .   
 

 

5.  Tannery Theory Potpourri . . . Trivia and Such 

 

 

 

Comment :   Consider  n,n 1,n 2,n n,nT (z)  t t t (z)= � ���   where each function is of the form   

k,n kt (z)  a (n) z= +   and  k k
n
lim a (n) a

→∞
= .    Then 

 

                            n,n 1 2 nT (0)  a (n) a (n) a (n)= + + +�   . 

 

Tannery's original theorem covered this sort of thing, using uniform convergence 

properties:  

                         1 2 n 1 2
n
lim[a (n) a (n) a (n)]  a a

→∞
+ + + = + +� �  

 

Several examples where TT may or may not apply:   

In each instance,  k ka (n) a  0→ ≡   as  n  → ∞ .  Does  
n

k
n

k 1

lim a (n)  0
→∞

=

=∑   ? 

 

Example 1:  
n

k n,n k
n n

k 1

k
a (n)   lim T (0) lim a (n)

n →∞ →∞
=

= ⇒ = = ∞∑  

 

Example 2:  
n

k n,n k2 n n
k 1

k 1
a (n)   lim T (0) lim a (n)

n 2→∞ →∞
=

= ⇒ = =∑  

 

Example 3:  
n

k n,n k 1 23 n n
k 1

k
a (n)   lim T (0) lim a (n) a a  0 0  0

n →∞ →∞
=

= ⇒ = = + + = + + =∑ � �  

 

Example 4:  

1n

k n,n k
n n

k 1 0

1 k
a (n) f  ,  f C[0,1]  lim T (0) lim a (n)  f (x)dx

n n →∞ →∞
=

 
= ∈ ⇒ = = 

 
∑ ∫  

                                                      

 

 

 

 

 

 



 

Simple observations arising from the preceding examples . . .   

 

   ___________________________________________________________ 

 

Theorem 5.1 :   Suppose  k
n
lim a (n) 0

→∞
≡   for  1 2 nS(n)  a (n) a (n) a (n)= + + +� .   Then 

(a)  ka (n)     S(n)
n

ρ
≥ ⇒ ≥ ρ  

(b)  k 1

1
a (n)  , >0     S(n) 0

n +α
≤ α ⇒ →  

(c)  k 1 k 1 n 1

m
a (n) a (n)   ,   >1  ,  a (n)     S(n) m>0+ −

≥ ρ⋅ ρ ≥ ⇒ ≥
ρ

 

(d)  k 1 ka (n) a (n)   ,   1      S(n) 0+ ≤ ρ⋅ ρ < ⇒ →  

    ___________________________________________________________ 

                            
In more general settings: 
 

Example 5:  {k

0  if   k<n
a (n)

1  if   k=n
=    shows that   

n

n,n k
n n

k 1

lim T (0) lim a (n)
→∞ →∞

=

= ∑  may exist in the 

absence of  the condition  na (n) 0→ .  

 

Example 6:   {k

1  if   k<n
a (n)

0  if   k=n
=    shows that  na (n) 0→    does not imply 

n

n,n k
n n

k 1

lim T (0) lim a (n)
→∞ →∞

=

= ∑    exists (in a finite sense). 

 

Observe the Tannery Series   

 

                    S(n) = 1 2 na (n) a (n) a (n)+ + +� ,  with 

 

k k k,n

(k)
a (n) a  , where (k) is a linear function of  k and   > 2

nβ

λ
− < ε ≤ λ β . 

 

Then          1 2 k
n
limS(n) a a  ,  provided  a   converges.

→∞
= + + ∑�   

Tighter conditions are possible, but this simple example shows that the original Tannery's 

Theorem for series has more latitude.   

 

                                  Alternating Tannery Series 

    

Alternating series  n 1

n 1 2 3 nS a a a ( 1) a+= − + − + −�   require only that   



n n 1 n
n

a a    and   lim a 0+
→∞

> =   for convergence, so it would seem reasonable that a Tannery 

Series,  n 1

1 2 nS(n) a (n) a (n) ( 1) a (n)+= − + + −�  , in order to converge to the alternating 

series, should exhibit a fairly rapid convergence of individual terms to those of the series.  

Theorem 2.4  is applicable ( k,n kt (z)  a (n) z= + ) in that  

n

k k k k

1

a (n) a (n)  with  (n) 0− < ε ε →∑   is sufficient to insure the convergence of the 

alternating Tannery Series:     
n

n k

1

S(n) S (n) 0− < ε →∑  

                                                

Example:    
2 2 2 2

n 1

2 2 2 2 2

n 2n 3n n n
S(n) ( 1)

1 n 1 4n 1 9n 1 n n

+ ⋅
= − + − + −

+ + + + ⋅
�   .  Here the 

corresponding alternating series is  n 1

n

1 1 1
S 1 ( 1)

2 3 n

+= − + − + −�  

We find that     k k n2

1 1
a (n) a    so that  S(n) - S    0

n n
− < < → .   

 

                           

                         An Integral Test for Tannery Series     

 

The following result is an analogue of the familiar Integral Test for series. It doesn't 

provide a spectacular new perspective on the subject . . . it's merely a curiosity that could 

probably be improved: 

 

              _______________________________________________________ 

 

Theorem 5.3 :   Let   S(n) = 1 2 na (n) a (n) a (n)+ + +� , and suppose that  there exists a 

non-negative, bounded and differentiable function  f(x,t) , defined for x 1  and  t x≥ ≥ ,   

with  kf (k,n) a (n)= ,     t xf (x, t) 0   and   f (x, t) 0> <  , f (1,n) M≤ .       Then    

                          

n

n n
1

limS(n)   exists if and only if   lim f (x, n)dx  exists
→∞ →∞ ∫     

             _________________________________________________________ 

 

Proof:        A graphical representation shows the following: 

 

                

n n

n 1

1 1

f (x, n)dx  a (n)  S(n)  f (x,n)dx + a (n)+ ≤ ≤∫ ∫  

 

The hypotheses  imply  S(n)  and  

n

1

f (x, n)dx∫   are monotonic increasing. If  S(n) 

converges,  na (n)  tends to zero.  .   . ||    

 



 

 

 Two simple examples illustrate the theorem: 

 

Example:   
2

2 2 2 2

n n n n 1 1
S(n) (1 )

(n 1)1 (n 1)2 (n 1)n n 1 4 n 6

π
= + + + = + + + →

+ + + +
� �  

 

Here,  

n 2

2

1

n 1 n
dx     1+1=2  

n 1 x n 1 6

π
+ → ≥

+ +∫  

 

Example: 
n

2 2 2
k=1

n n n 1
S(n)   (    )

n 1 1 n 1 2 n 1 n 2+k
= + + + ≥ → ∞

+ + + + + +
∑�    

 

Here,  

n

2

1

n n n 1
dx Arc tan Arc tan   

n 1 x n 1 n 1 n 1

 
= − → ∞ + + + + + 

∫ , 

 

so that  
n
limS(n)

→∞
= ∞ .   

 

 

                             Other Simple Results for Tannery Series   

          _______________________________________________________ 

 

Theorem 5.4 :   Let  S(n) = 1 2 na (n) a (n) a (n)+ + +� , and suppose there exists a non-

negative, bounded, and differentiable function  f(x,t) defined for  x 0  and  t x≥ ≥ ,  with  

kf (k,n) a (n)= .  Define  (x) f (x, x).φ =    Suppose  

x tf (x, t) 0 , f (x, t) 0 , and  (x) 0 as  x .≥ < φ → → ∞  Also stipulate  f (1, t) 0  as  t→ → ∞ .  

Then   

    

n

1 n

1

0 a (n)  S(n)  f (x,n)dx  a (n)  0← ≤ − ≤ →∫    as n becomes infinite. 

       _________________________________________________________ 

 

Proof:    The easiest proof involves drawing a simple histogram. || 

 

 

Example:  x t2 2 3

x 1 2k
f (x, t)  ,  then  f (x, t) 0 ,  f (x, t) 0

t t t

−
= = > = < and  

1
(x)  0

x
φ = → . 

The theorem shows that  
2 n

1 1 1 1
1    -   S(n)    0,  or  limS(n)

2 n 2 2→∞

 
− + → = 

 
, as is easily 

verified by  evaluating  S(n) directly:  S(n) = ( )2

1
1 2 3 n

n
+ + + +� . 



 

 

 

 

Example:   A slightly more sophisticated example is the following: 
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1 2 n
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1 n 2 n n n
= + + +

+ + +
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Here  
2 2

x
f (x, t)

x t
=

+
  and the conditions of the theorem are satisfied for the relevant 

values of the variables.  Thus   

 

                    
2

1 2 1 1 1
Ln 2   -  S(n)  0 ,   or S(n) Ln(2)

2 n n 2n 2

 
− + + → → 

 
 

 

The convergence is very slow. (elementary techniques also show this result) 
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x 1 k
 dx     =  lim

2x n k n

−

→∞
=

→
+ +

∑∫  

 

          _______________________________________________________ 

 

Theorem 5.5 :   Let  S(n) = 1 2 na (n) a (n) a (n)+ + +� , and suppose there exists a non-

negative, bounded, and differentiable function  f(x,t) defined for  x 0  and  t x≥ ≥ ,  with  

kf (k,n) a (n)= .  Define  (x) f (x, x).φ =    Suppose   

x tf (x, t) 0 , f (x, t) 0 , and  (x) 0 as  x ,  and  f(1,t) 0  as t< < φ → → ∞ → → ∞  

Then   

             

n

n 1

1

0 a (n)  S(n)  f (x, n)dx  a (n)  0← ≤ − ≤ →∫   as  n  becomes infinite. 

         _________________________________________________________ 

 

Proof:   Draw a picture! || 

 

Example:    

                     
2 2 2 2 2 2

n n n
S(n) =     . . .  

1 n 2 n n n
+ + +

+ + +
 

 The conditions of Theorem 4 are satisfied, giving 
n
limS(n)  

4→∞

π
=  .  



(elementary techniques also show this result). 

  

 

   
                 Absolute Convergence  &  Analytic Functions 

 

Tannery series 1 2 na (n) a (n) a (n)+ + +�   are much more interesting if  

ka (n) 0  as  n   for each  k→ → ∞   and  Tannery's Theorem – the original version – does 

not apply.   If , in the Tannery Series  S(n) = 1 2 na (n) a (n) a (n)+ + +�  ,  each  

k ka (n) a= , then  S(n) is merely a normal series and consequently its absolute 

convergence implies normal convergence. But if this is not the case , and each term 

involves n,  then absolute convergence does not imply convergence, as seen in the 

following simple example.   

 

Example:    Set  
2

2

k

k

n
-k

n

 if  n even
a (n)

 if n  odd

 
 

=  
 
 

 .   Then,  for  n  even  
1

S(n)
2

→  ,    but for    

n  odd   
1

S(n)
2

→ − ,   although the series converges absolutely to the value  ½.     Here  

ka (n) 0  as  n   for each  k→ → ∞ . Observe that were the original Tannery Theorem 

applicable, we would have a very uninteresting  S(n) 0 → .  However, the absolute 

convergence of  S(n) does imply the existence of at least one subsequence  { }jn  with  

{ }
jnS  converging,  since  1 nS(n)  a (n) + + a (n)    M ≤ ≤� . 

 

 

                                    

 

 

Analytic Functions . . .  

 

      __________________________________________________________ 

 

Theorem 5.6 :  Define  n 1,n 2,n n,nF (z) a (z) a (z) a (z)= + + +�   where each term in the  

Tannery series is analytic on  D=(|z|<1)  and there exists a positive  M  such that  

k,n

M
a (z)   for each  k n

n
≤ ≤ .  Furthermore, assume there exists an interval  (a,b)  in  

 (-1,1) so that for each x in this interval,  nF (x) (x)→ λ .  Then  nF (z) (z)→ λ  , analytic 

on D, uniformly on compact subsets of D.  

     ___________________________________________________________ 

 



Proof:  Follows immediately from the Stieltjes-Vitali Theorem [9], with nF (z) M< . The 

domain D may of course be generalized. || 

 

 

 

 

Corollary:   Set  k,n k,n k,n k,n

1
a (z) (z)   where  each  is analytic on D and (z) M

n
= Φ Φ Φ < . 

Then  nF (z) (z)→ λ  , analytic on D, uniformly on compact subsets of D.  

 

Example:  Define  
1 z n z

n n
n

1 1
F (z) e e

n n

+ +

= + +�    with  D=(|z|<1).  It is easily shown that        

                       k,n n

10
a (z)   so that  F (z) 10.

n
< <   

    

   Let    z = u + iv  with  0<u<1, for example.  

 

Writing  
x u

t
1

f (x, t) e
t

+

= :  x tf 0 , f 0 , f(x,x) 0 and  f(1,t) 0≥ < → → , so that Theorem 8 

applies , with  

n x u

n
n

n n
1

1
limS (u) lim  e dx = e 1

n

+

→∞ →∞
= −∫ .  Therefore,  nF (z) (z)→ λ  = e – 1.  

 

 

 

Inner & Outer Composition in a compact set – Convergence to analytic functions 

 

    ______________________________________________________________ 

 

Theorem 5.7 :   Let  D=(|z|<1)  and S be a simply-connected domain. Suppose there exists 

a sequence of functions  k,n k n{f ( , z)} ≤ζ   analytic on both  D  and  S,  with  

k,nf (S, D)  , compact, D⊂ Ω ⊂ .  Suppose  k,n kf f  uniformly on S D as  n→ × → ∞ .   

Set        (1)   1 1 n n 1 n

1,n 1,n p,n p 1,n p,n

F ( , z) f ( , z) , F ( , z) F ( , f ( , z))  and
F ( , z) f ( , z) , F ( , z) F ( , f ( , z))

−

−

ζ = ζ ζ = ζ ζ
ζ = ζ ζ = ζ ζ  

             (2)   1 1 n n n 1

1,n 1,n p,n p,n p 1,n

G ( ,z) f ( , z) , G ( , z) f ( ,G ( , z))  and
G ( , z) f ( , z) , G ( , z) f ( ,G ( , z))

−

−

ζ = ζ ζ = ζ ζ
ζ = ζ ζ = ζ ζ  

 

 Then:  (1)   n,n n
n n
lim F ( , z) lim F ( , z) ( ) , analytic on S

→∞ →∞
ζ = ζ = λ ζ   ,      and 

            (2)   n,n k k k k
n k
lim G ( ,z) ( ) lim ( ) , where ( ) f ( , ( ))

→∞ →∞
ζ = α ζ = α ζ α ζ = ζ α ζ  ,  

                    analytic on S.  

       _________________________________________________________________ 

 



Proof:  The previously cited Lorentzen Theorem and its extension by Gill, and  Theorem 

3.3 .  The Stieltjes-Vitali Theorem [9] confirms the analyticity of the limit functions. || 

 

 

 

 

 

Example:  Tannery Continued Fraction  

 

Set  k,n
n

f ( , z)  , where C 3, 0 (k,n) 1, lim (k,n)=0  
C (k,n) z →∞

ζ
ζ = ≥ ≤ δ ≤ δ

+ δ +
 

Let  3
4

S D (| z | 1)   and   (| z | )= = < Ω = ≤ .   Thus  k,n k 2

1
f f (k, n)

(C 1)
− < δ ⋅

−
. 

Then  n,nF ( , z)   
C (1, n) C (2, n) C (n, n) z

ζ ζ ζ
ζ =

++++ δ + δ + δ +�
   and   

( )2

n,n
n

1
lim F ( , z) ( ) C 4 C

C C 2→∞

ζ ζ
ζ = = α ζ = + ζ −

++ �
  .  

 

 

 

              Constructing Tannery Series from analytic functions . . . 

      ___________________________________________________________ 

 

Theorem 5.8 :  Let  f  be a function analytic on D = (|z|<1), with  f(0) = 0 , and  |f(z)|<R.  

Let  (k, n)  and   = (k,n) ,  k n,α = α β β ≤  be real and imaginary parts of points within D.     

If  
n n

k 1 k 1

M
= =

α + β ≤∑ ∑   for all n, then    S(n) = 
n

k 1

f ( (k,n) i (k,n))   MR
=

α + β ≤∑    and  there 

exists at least one subsequence  j{n }  such that  j{S(n )}   converges.  

   ____________________________________________________________ 

 

Proof:  A simple application of Schwarz's Lemma suffices. || 

 

Of possible value is the following 

 

Corollary:  Suppose  
n n

k 1 k 1

  0  as n
= =

α + β → → ∞∑ ∑ .  Then, for any function  f  defined as 

above,  
n

k 1

f ( (k,n) i (k, n))    0  as  n
=

α + β → → ∞∑ .   

 

Here's an easy application: 

Exercise:  Use the function  
ze z 1

f (z)
z

− −
=    in the corollary above                                            



              to prove that   
1 1 1

n 2n n nS(n) (e 1) 2(e 1) n(e 1)  1⋅= − + − + + − →� . 

 

 

           Evaluation of Tannery Series Not Satisfying Tannery’s Theorem 
 

Consider                  
1

( )
n

n k

k

S a n
=

=∑    with  ( )
k k

a n a→
 
  but    

1

lim
n k

n
k

S a
∞

→∞
=

≠∑ .  

The simplest interesting example of such a convergent TS is          

 

                              

1

1 0

1
    ( )

n

n

k

k
x dx

n n
φ φ φ

=

 
= → 

 
∑ ∫ .   

 

Suppose one wishes to evaluate 

                
2 2 2 2

2 2
1 1

1 1 1
 ( , ) , ( , )

( )

n n

n

k k

kn k n kn k n
k n k n

n n k n n k
ψ ψ ψ

= =

+ + + + + +
= = =

+ +
∑ ∑ . 

Then  
( ) ( )

( )
2

2
1

2

1

1
( , )    where  (x) 1

1

k k
n n n

k
n n

k
k n x x

n
ψ φ φ

+ + +  
= ≈ = + + 

+ ⋅  
 , and one might 

suspect that  
11

6
n

ψ → .  Indeed, this is the case, as is seen in the following simple 

theorem: 

 

   

_______________________________________________________________________ 

Theorem 5.9 :   Given   
1

1
( , )

n

n

k

k n
n

ψ ψ
=

= ∑ ,   

suppose there exists an integrable function  ( )xφ  with 

 

             

1

0

( )I x dxφ= ∫     and     ( , ) ( , )  
n

k
k n k n R

n
φ ψ ε
 

∆ = − ≤ ⋅ 
 

, 0
n

ε → .   

  

Then         lim
n

n
Iψ

→∞
=  .  

________________________________________________________________________ 

 

 

 

Proof:    0
n n n

R
n

n
φ ψ ε− ≤ ⋅ ⋅ →         || 

 

 

 



 

 

Example:  
( )2

2 1

1

k kn
n

n

k

Sin

n
ψ

+

+

=

=∑  .   Thus  
2 2

, 2 2

1
( , ) ( ) 2

1
k n

k k k
k n Cos

n n n
η

+
∆ = ⋅ − ≤ ≤ ⋅

+
�  . 

Hence      

1

2

0

lim ( )
n

n
Sin x dxψ

→∞
= ∫ . 

 

Here’s a curiosity couched as a problem:  Partition the interval [0,1] into uneven, 

increasingly lengthy subintervals, going from 0 to 1, to obtain  

( ) ( )

( )

2 23 21

2

33
1 10

2 1 2 1
( 1) lim lim

1

n n

n
n n

k k

k k kn n
x dx T

n n→∞ →∞
= =

+ + +
+ = =

+
∑ ∑∫ .    Then manipulate 

n
T  so as to  

obtain              ( )
1

5

1 0

lim 2 2
n

n
n

k

T x x dx
→∞

=

= +∑ ∫   ! 
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