John Long’s Hilbert Space

The “vectors” in the original linear space are Zeno contours: contours in the complex plane that
are given parametrically as z(t) or y(t), 0<t <1, as solutions of the differential equations
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Define an inner product that provides an abstract version of orthogonality (intersection of two
1

lines at right angles) : <71,72> =J.71?2 dt, from which one infers a norm of the space (“how far”
0

the vector is from the origin): ||7|| = <7, }/> . This norm induces a metric for the space (defines

“distance between vectors”) : d(7,,%,) =||7. - 7|
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Linear operators are employed on Hilbert Spaces. A very simple example is: O(y) = e77.

Comment: There is nothing original here . . . simply an elementary example of a Hilbert Space
for an aging rock climber and writer who loves them. Physicists use Hilbert Spaces as
computational tools and employ somewhat different notations.



